YOLO - Reference

I’ll list all these references on this page, they might not mean much at this time but I’ll refer to them as we progress.

Here are some links to the documents and other at ultralytics https://docs.ultralytics.com/ and proceed to reference which is the quickest to retrieve a subject.

GPU


Let’s start by checking to see if we can reach the local GPU on my windows 11 system to use for running inference for YOLO models.

I am aware as of the date of this writing that YOLO does not allow training their models on AMD Radeon GPUs. It is only compatible with NVIDIA GPUs.

Here are the steps to test if it will run inference on my local AMD Radeon GPU.

1- install the DirectML version of ONNX. It’s crucial to choose ONNX DirectML over any other variants or versions. The Python package you need is aptly named “onnxruntime_directml”. Feel free to use:

Make sure you install it in the venv you are using for your project

pip install onnxruntime-directml

# for me
(.venv) PS D:~\od_proj1>pip install onnxruntime-directml

2- render your YOLO model into the ONNX format.

from ultralytics import YOLO

model = YOLO('yolov8n.pt')
model.export(format='onnx')

3- Add the ‘DmlExecutionProvider’ string to the providers list: this is lines 133 to 140 in “.venv\Lib\site-packages\ultralytics\nn\autobackend.py”:

I guess step 3 should be step 2. Make sure you comment out line 135 as shown below

133        elif onnx:  # ONNX Runtime
134        LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
135        # check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
136        import onnxruntime
137        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['DmlExecutionProvider', 'CPUExecutionProvider']
138        session = onnxruntime.InferenceSession(w, providers=providers)
139        output_names = [x.name for x in session.get_outputs()]
140        metadata = session.get_modelmeta().custom_metadata_map  # metadata

The lines in my file are at different location

Arguments


from ultralytics import YOLO

# Load a pretrained YOLO11n model
model = YOLO("yolo11n.pt")

# Run inference on 'bus.jpg' with arguments
model.predict("bus.jpg", save=True, imgsz=320, conf=0.5)

In order to run the model we use model.predict() which accepts multiple arguments

Inference arguments

Argument Type Default Description
source str 'ultralytics/assets' Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across different types of input.
conf float 0.25 Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives.
iou float 0.7 Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates.
imgsz int or tuple 640 Defines the image size for inference. Can be a single integer 640 for square resizing or a (height, width) tuple. Proper sizing can improve detection accuracy and processing speed.
half bool False Enables half-precision (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy.
device str None Specifies the device for inference (e.g., cpu, cuda:0 or 0). Allows users to select between CPU, a specific GPU, or other compute devices for model execution.
batch int 1 Specifies the batch size for inference (only works when the source is a directory, video file or .txt file). A larger batch size can provide higher throughput, shortening the total amount of time required for inference.
max_det int 300 Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes.
vid_stride int 1 Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames.
stream_buffer bool False Determines whether to queue incoming frames for video streams. If False, old frames get dropped to accommodate new frames (optimized for real-time applications). If `True’, queues new frames in a buffer, ensuring no frames get skipped, but will cause latency if inference FPS is lower than stream FPS.
visualize bool False Activates visualization of model features during inference, providing insights into what the model is “seeing”. Useful for debugging and model interpretation.
augment bool False Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed.
agnostic_nms bool False Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common.
classes list[int] None Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks.
retina_masks bool False Returns high-resolution segmentation masks. The returned masks (masks.data) will match the original image size if enabled. If disabled, they have the image size used during inference.
embed list[int] None Specifies the layers from which to extract feature vectors or embeddings. Useful for downstream tasks like clustering or similarity search.
project str None Name of the project directory where prediction outputs are saved if save is enabled.
name str None Name of the prediction run. Used for creating a subdirectory within the project folder, where prediction outputs are stored if save is enabled.

Visualization arguments

Argument Type Default Description
show bool False If True, displays the annotated images or videos in a window. Useful for immediate visual feedback during development or testing.
save bool False or True Enables saving of the annotated images or videos to file. Useful for documentation, further analysis, or sharing results. Defaults to True when using CLI & False when used in Python.
save_frames bool False When processing videos, saves individual frames as images. Useful for extracting specific frames or for detailed frame-by-frame analysis.
save_txt bool False Saves detection results in a text file, following the format [class] [x_center] [y_center] [width] [height] [confidence]. Useful for integration with other analysis tools.
save_conf bool False Includes confidence scores in the saved text files. Enhances the detail available for post-processing and analysis.
save_crop bool False Saves cropped images of detections. Useful for dataset augmentation, analysis, or creating focused datasets for specific objects.
show_labels bool True Displays labels for each detection in the visual output. Provides immediate understanding of detected objects.
show_conf bool True Displays the confidence score for each detection alongside the label. Gives insight into the model’s certainty for each detection.
show_boxes bool True Draws bounding boxes around detected objects. Essential for visual identification and location of objects in images or video frames.
line_width None or int None Specifies the line width of bounding boxes. If None, the line width is automatically adjusted based on the image size. Provides visual customization for clarity.

Images

Image Suffixes Example Predict Command Reference
.bmp yolo predict source=image.bmp Microsoft BMP File Format
.dng yolo predict source=image.dng Adobe DNG
.jpeg yolo predict source=image.jpeg JPEG
.jpg yolo predict source=image.jpg JPEG
.mpo yolo predict source=image.mpo Multi Picture Object
.png yolo predict source=image.png Portable Network Graphics
.tif yolo predict source=image.tif Tag Image File Format
.tiff yolo predict source=image.tiff Tag Image File Format
.webp yolo predict source=image.webp WebP
.pfm yolo predict source=image.pfm Portable FloatMap
.HEIC yolo predict source=image.HEIC High Efficiency Image Format

Videos

Video Suffixes Example Predict Command Reference
.asf yolo predict source=video.asf Advanced Systems Format
.avi yolo predict source=video.avi Audio Video Interleave
.gif yolo predict source=video.gif Graphics Interchange Format
.m4v yolo predict source=video.m4v MPEG-4 Part 14
.mkv yolo predict source=video.mkv Matroska
.mov yolo predict source=video.mov QuickTime File Format
.mp4 yolo predict source=video.mp4 MPEG-4 Part 14 - Wikipedia
.mpeg yolo predict source=video.mpeg MPEG-1 Part 2
.mpg yolo predict source=video.mpg MPEG-1 Part 2
.ts yolo predict source=video.ts MPEG Transport Stream
.wmv yolo predict source=video.wmv Windows Media Video
.webm yolo predict source=video.webm WebM Project

Results

from ultralytics import YOLO

# Load a pretrained YOLO11n model
model = YOLO("yolo11n.pt")

# Run inference on an image
results = model("bus.jpg")  # list of 1 Results object
results = model(["bus.jpg", "zidane.jpg"])  # list of 2 Results objects

Results Attributes

Attribute Type Description
orig_img numpy.ndarray The original image as a numpy array.
orig_shape tuple The original image shape in (height, width) format.
boxes Boxes, optional A Boxes object containing the detection bounding boxes.
masks Masks, optional A Masks object containing the detection masks.
probs Probs, optional A Probs object containing probabilities of each class for classification task.
keypoints Keypoints, optional A Keypoints object containing detected keypoints for each object.
obb OBB, optional An OBB object containing oriented bounding boxes.
speed dict A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image.
names dict A dictionary of class names.
path str The path to the image file.

Object Methods

Method Return Type Description
update() None Update the boxes, masks, and probs attributes of the Results object.
cpu() Results Return a copy of the Results object with all tensors on CPU memory.
numpy() Results Return a copy of the Results object with all tensors as numpy arrays.
cuda() Results Return a copy of the Results object with all tensors on GPU memory.
to() Results Return a copy of the Results object with tensors on the specified device and dtype.
new() Results Return a new Results object with the same image, path, and names.
plot() numpy.ndarray Plots the detection results. Returns a numpy array of the annotated image.
show() None Show annotated results to screen.
save() None Save annotated results to file.
verbose() str Return log string for each task.
save_txt() None Save predictions into a txt file.
save_crop() None Save cropped predictions to save_dir/cls/file_name.jpg.
tojson() str Convert the object to JSON format.

Boxes

Boxes object can be used to index, manipulate, and convert bounding boxes to different formats.

from ultralytics import YOLO

# Load a pretrained YOLO11n model
model = YOLO("yolo11n.pt")

# Run inference on an image
results = model("bus.jpg")  # results list

# View results
for r in results:
    print(r.boxes)  # print the Boxes object containing the detection bounding boxes

Here is a table for the Boxes class methods and properties, including their name, type, and description:

Name Type Description
cpu() Method Move the object to CPU memory.
numpy() Method Convert the object to a numpy array.
cuda() Method Move the object to CUDA memory.
to() Method Move the object to the specified device.
xyxy Property (torch.Tensor) Return the boxes in xyxy format.
conf Property (torch.Tensor) Return the confidence values of the boxes.
cls Property (torch.Tensor) Return the class values of the boxes.
id Property (torch.Tensor) Return the track IDs of the boxes (if available).
xywh Property (torch.Tensor) Return the boxes in xywh format.
xyxyn Property (torch.Tensor) Return the boxes in xyxy format normalized by original image size.
xywhn Property (torch.Tensor) Return the boxes in xywh format normalized by original image size.

Masks

Masks object can be used index, manipulate and convert masks to segments.

from ultralytics import YOLO

# Load a pretrained YOLO11n-seg Segment model
model = YOLO("yolo11n-seg.pt")

# Run inference on an image
results = model("bus.jpg")  # results list

# View results
for r in results:
    print(r.masks)  # print the Masks object containing the detected instance masks

Here is a table for the Masks class methods and properties, including their name, type, and description:

Name Type Description
cpu() Method Returns the masks tensor on CPU memory.
numpy() Method Returns the masks tensor as a numpy array.
cuda() Method Returns the masks tensor on GPU memory.
to() Method Returns the masks tensor with the specified device and dtype.
xyn Property (torch.Tensor) A list of normalized segments represented as tensors.
xy Property (torch.Tensor) A list of segments in pixel coordinates represented as tensors.

Keypoints

Keypoints object can be used index, manipulate and normalize coordinates.

from ultralytics import YOLO

# Load a pretrained YOLO11n-pose Pose model
model = YOLO("yolo11n-pose.pt")

# Run inference on an image
results = model("bus.jpg")  # results list

# View results
for r in results:
    print(r.keypoints)  # print the Keypoints object containing the detected keypoints

Here is a table for the Keypoints class methods and properties, including their name, type, and description:

Name Type Description
cpu() Method Returns the keypoints tensor on CPU memory.
numpy() Method Returns the keypoints tensor as a numpy array.
cuda() Method Returns the keypoints tensor on GPU memory.
to() Method Returns the keypoints tensor with the specified device and dtype.
xyn Property (torch.Tensor) A list of normalized keypoints represented as tensors.
xy Property (torch.Tensor) A list of keypoints in pixel coordinates represented as tensors.
conf Property (torch.Tensor) Returns confidence values of keypoints if available, else None.

Probs

Probs object can be used index, get top1 and top5 indices and scores of classification.

from ultralytics import YOLO

# Load a pretrained YOLO11n-cls Classify model
model = YOLO("yolo11n-cls.pt")

# Run inference on an image
results = model("bus.jpg")  # results list

# View results
for r in results:
    print(r.probs)  # print the Probs object containing the detected class probabilities

Here’s a table summarizing the methods and properties for the Probs class:

Name Type Description
cpu() Method Returns a copy of the probs tensor on CPU memory.
numpy() Method Returns a copy of the probs tensor as a numpy array.
cuda() Method Returns a copy of the probs tensor on GPU memory.
to() Method Returns a copy of the probs tensor with the specified device and dtype.
top1 Property (int) Index of the top 1 class.
top5 Property (list[int]) Indices of the top 5 classes.
top1conf Property (torch.Tensor) Confidence of the top 1 class.
top5conf Property (torch.Tensor) Confidences of the top 5 classes.

OBB

OBB object can be used to index, manipulate, and convert oriented bounding boxes to different formats.

from ultralytics import YOLO

# Load a pretrained YOLO11n model
model = YOLO("yolo11n-obb.pt")

# Run inference on an image
results = model("boats.jpg")  # results list

# View results
for r in results:
    print(r.obb)  # print the OBB object containing the oriented detection bounding boxes

Here is a table for the OBB class methods and properties, including their name, type, and description:

Name Type Description
cpu() Method Move the object to CPU memory.
numpy() Method Convert the object to a numpy array.
cuda() Method Move the object to CUDA memory.
to() Method Move the object to the specified device.
conf Property (torch.Tensor) Return the confidence values of the boxes.
cls Property (torch.Tensor) Return the class values of the boxes.
id Property (torch.Tensor) Return the track IDs of the boxes (if available).
xyxy Property (torch.Tensor) Return the horizontal boxes in xyxy format.
xywhr Property (torch.Tensor) Return the rotated boxes in xywhr format.
xyxyxyxy Property (torch.Tensor) Return the rotated boxes in xyxyxyxy format.
xyxyxyxyn Property (torch.Tensor) Return the rotated boxes in xyxyxyxy format normalized by image size.

Plotting Results

The plot() method in Results objects facilitates visualization of predictions by overlaying detected objects (such as bounding boxes, masks, keypoints, and probabilities) onto the original image. This method returns the annotated image as a NumPy array, allowing for easy display or saving.

from PIL import Image

from ultralytics import YOLO

# Load a pretrained YOLO11n model
model = YOLO("yolo11n.pt")

# Run inference on 'bus.jpg'
results = model(["bus.jpg", "zidane.jpg"])  # results list

# Visualize the results
for i, r in enumerate(results):
    # Plot results image
    im_bgr = r.plot()  # BGR-order numpy array
    im_rgb = Image.fromarray(im_bgr[..., ::-1])  # RGB-order PIL image

    # Show results to screen (in supported environments)
    r.show()

    # Save results to disk
    r.save(filename=f"results{i}.jpg")

Plot Parameters

The plot() method supports various arguments to customize the output:

Argument Type Description Default
conf bool Include detection confidence scores. True
line_width float Line width of bounding boxes. Scales with image size if None. None
font_size float Text font size. Scales with image size if None. None
font str Font name for text annotations. 'Arial.ttf'
pil bool Return image as a PIL Image object. False
img numpy.ndarray Alternative image for plotting. Uses the original image if None. None
im_gpu torch.Tensor GPU-accelerated image for faster mask plotting. Shape: (1, 3, 640, 640). None
kpt_radius int Radius for drawn keypoints. 5
kpt_line bool Connect keypoints with lines. True
labels bool Include class labels in annotations. True
boxes bool Overlay bounding boxes on the image. True
masks bool Overlay masks on the image. True
probs bool Include classification probabilities. True
show bool Display the annotated image directly using the default image viewer. False
save bool Save the annotated image to a file specified by filename. False
filename str Path and name of the file to save the annotated image if save is True. None
color_mode str Specify the color mode, e.g., ‘instance’ or ‘class’. 'class'

Streaming Source


To optimize inference speed and manage memory efficiently, you can use the streaming mode by setting stream=True in the predictor’s call method. The streaming mode generates a memory-efficient generator of Results objects instead of loading all frames into memory. For processing long videos or large datasets, streaming mode is particularly useful.

Streaming For Loop

Here’s a Python script using OpenCV (cv2) and YOLO to run inference on video frames. This script assumes you have already installed the necessary packages (opencv-python and ultralytics).

This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing ‘q’.

import cv2

from ultralytics import YOLO

# Load the YOLO model
model = YOLO("yolo11n.pt")

# Open the video file
video_path = "path/to/your/video/file.mp4"
cap = cv2.VideoCapture(video_path)

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLO inference on the frame
        results = model(frame)

        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Display the annotated frame
        cv2.imshow("YOLO Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()